Stability of Finite Horizon Optimisation based Control without Terminal Weight

28 Nov 2020  ·  Wen-Hua Chen ·

This paper presents a stability analysis tool for model predictive control (MPC) where control action is generated by optimising a cost function over a finite horizon. Stability analysis of MPC with a limited horizon but without terminal weight is a well known challenging problem. We define a new value function based on an auxiliary one-step optimisation related to stage cost, namely optimal one-step value function (OSVF). It is shown that a finite horizon MPC can be made to be asymptotically stable if OSVF is a (local) control Lyapunov function (CLF). More specifically, by exploiting the CLF property of OSFV to construct a contractive terminal set, a new stabilising MPC algorithm (CMPC) is proposed. We show that CMPC is recursively feasible and guarantees stability under the condition that OSVF is a CLF. Checking this condition and estimation of the maximal terminal set are discussed. Numerical examples are presented to demonstrate the effectiveness of the proposed stability condition and corresponding CMPC algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here