Model Selection in Bayesian Neural Networks via Horseshoe Priors

29 May 2017  ·  Soumya Ghosh, Finale Doshi-Velez ·

Bayesian Neural Networks (BNNs) have recently received increasing attention for their ability to provide well-calibrated posterior uncertainties. However, model selection---even choosing the number of nodes---remains an open question. In this work, we apply a horseshoe prior over node pre-activations of a Bayesian neural network, which effectively turns off nodes that do not help explain the data. We demonstrate that our prior prevents the BNN from under-fitting even when the number of nodes required is grossly over-estimated. Moreover, this model selection over the number of nodes doesn't come at the expense of predictive or computational performance; in fact, we learn smaller networks with comparable predictive performance to current approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here