Modeling Task Effects in Human Reading with Neural Attention

31 Jul 2018  ·  Michael Hahn, Frank Keller ·

Humans read by making a sequence of fixations and saccades. They often skip words, without apparent detriment to understanding... We offer a novel explanation for skipping: readers optimize a tradeoff between performing a language-related task and fixating as few words as possible. We propose a neural architecture that combines an attention module (deciding whether to skip words) and a task module (memorizing the input). We show that our model predicts human skipping behavior, while also modeling reading times well, even though it skips 40% of the input. A key prediction of our model is that different reading tasks should result in different skipping behaviors. We confirm this prediction in an eye-tracking experiment in which participants answers questions about a text. We are able to capture these experimental results using the our model, replacing the memorization module with a task module that performs neural question answering. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here