Modelling Latent Skills for Multitask Language Generation

21 Feb 2020 Kris Cao Dani Yogatama

We present a generative model for multitask conditional language generation. Our guiding hypothesis is that a shared set of latent skills underlies many disparate language generation tasks, and that explicitly modelling these skills in a task embedding space can help with both positive transfer across tasks and with efficient adaptation to new tasks... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet