Modelling the development of counting with memory-augmented neural networks

21 May 2021  ·  Zack Dulberg, Taylor Webb, Jonathan Cohen ·

Learning to count is an important example of the broader human capacity for systematic generalization, and the development of counting is often characterized by an inflection point when children rapidly acquire proficiency with the procedures that support this ability. We aimed to model this process by training a reinforcement learning agent to select N items from a binary vector when instructed (known as the give-$N$ task). We found that a memory-augmented modular network architecture based on the recently proposed Emergent Symbol Binding Network (ESBN) exhibited an inflection during learning that resembled human development. This model was also capable of systematic extrapolation outside the range of its training set - for example, trained only to select between 1 and 10 items, it could succeed at selecting 11 to 15 items as long as it could make use of an arbitrary count sequence of at least that length. The close parallels to child development and the capacity for extrapolation suggest that our model could shed light on the emergence of systematicity in humans.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here