MoE-TinyMed: Mixture of Experts for Tiny Medical Large Vision-Language Models

16 Apr 2024  ·  Songtao Jiang, Tuo Zheng, Yan Zhang, Yeying Jin, Zuozhu Liu ·

Mixture of Expert Tuning (MoE-Tuning) has effectively enhanced the performance of general MLLMs with fewer parameters, yet its application in resource-limited medical settings has not been fully explored. To address this gap, we developed MoE-TinyMed, a model tailored for medical applications that significantly lowers parameter demands. In evaluations on the VQA-RAD, SLAKE, and Path-VQA datasets, MoE-TinyMed outperformed LLaVA-Med in all Med-VQA closed settings with just 3.6B parameters. Additionally, a streamlined version with 2B parameters surpassed LLaVA-Med's performance in PathVQA, showcasing its effectiveness in resource-limited healthcare settings.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here