Molecular modeling with machine-learned universal potential functions

6 Mar 2021  ·  Ke Liu, Zekun Ni, Zhenyu Zhou, Suocheng Tan, Xun Zou, Haoming Xing, Xiangyan Sun, Qi Han, Junqiu Wu, Jie Fan ·

Molecular modeling is an important topic in drug discovery. Decades of research have led to the development of high quality scalable molecular force fields. In this paper, we show that neural networks can be used to train a universal approximator for energy potential functions. By incorporating a fully automated training process we have been able to train smooth, differentiable, and predictive potential functions on large-scale crystal structures. A variety of tests have also been performed to show the superiority and versatility of the machine-learned model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here