Monotone k-Submodular Function Maximization with Size Constraints

NeurIPS 2015 Naoto OhsakaYuichi Yoshida

A $k$-submodular function is a generalization of a submodular function, where the input consists of $k$ disjoint subsets, instead of a single subset, of the domain.Many machine learning problems, including influence maximization with $k$ kinds of topics and sensor placement with $k$ kinds of sensors, can be naturally modeled as the problem of maximizing monotone $k$-submodular functions.In this paper, we give constant-factor approximation algorithms for maximizing monotone $k$-submodular functions subject to several size constraints.The running time of our algorithms are almost linear in the domain size.We experimentally demonstrate that our algorithms outperform baseline algorithms in terms of the solution quality...

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet