Monotonicity Prior for Cloud Tomography

We introduce a differentiable monotonicity prior, useful to express signals of monotonic tendency. An important natural signal of this tendency is the optical extinction coefficient, as a function of altitude in a cloud. Cloud droplets become larger as vapor condenses on them in an updraft. Reconstruction of the volumetric structure of clouds is important for climate research. Data for such reconstruction is multi-view images taken simultaneously of each cloud. This acquisition mode is expected by upcoming future spaceborne imagers. We achieve three-dimensional volumetric reconstruction through stochastic scattering tomography, which is based on optimization of a cost function. Part of the cost is the monotonicity prior, which helps to improve the reconstruction quality. The stochastic tomography is based on Monte-Carlo radiative transfer. It is formulated and implemented in a coarse-to-fine form, making it scalable to large fields.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here