Monte Carlo algorithm for the extrema of tempered stable processes

29 Mar 2021  ·  Jorge Ignacio González Cázares, Aleksandar Mijatović ·

We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained and the position at a given (constant) time of an exponentially tempered L\'evy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb guidelines for users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here