Morphological Inflection Generation with Hard Monotonic Attention

ACL 2017  ·  Roee Aharoni, Yoav Goldberg ·

We present a neural model for morphological inflection generation which employs a hard attention mechanism, inspired by the nearly-monotonic alignment commonly found between the characters in a word and the characters in its inflection. We evaluate the model on three previously studied morphological inflection generation datasets and show that it provides state of the art results in various setups compared to previous neural and non-neural approaches. Finally we present an analysis of the continuous representations learned by both the hard and soft attention \cite{bahdanauCB14} models for the task, shedding some light on the features such models extract.

PDF Abstract ACL 2017 PDF ACL 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here