Morton Filters for Superior Template Protection for Iris Recognition

15 Jan 2020  ·  Kiran B. Raja, R. Raghavendra, Sushma Venkatesh, Christoph Busch ·

We address the fundamental performance issues of template protection (TP) for iris verification. We base our work on the popular Bloom-Filter templates protection & address the key challenges like sub-optimal performance and low unlinkability. Specifically, we focus on cases where Bloom-filter templates results in non-ideal performance due to presence of large degradations within iris images. Iris recognition is challenged with number of occluding factors such as presence of eye-lashes within captured image, occlusion due to eyelids, low quality iris images due to motion blur. All of such degrading factors result in obtaining non-reliable iris codes & thereby provide non-ideal biometric performance. These factors directly impact the protected templates derived from iris images when classical Bloom-filters are employed. To this end, we propose and extend our earlier ideas of Morton-filters for obtaining better and reliable templates for iris. Morton filter based TP for iris codes is based on leveraging the intra and inter-class distribution by exploiting low-rank iris codes to derive the stable bits across iris images for a particular subject and also analyzing the discriminable bits across various subjects. Such low-rank non-noisy iris codes enables realizing the template protection in a superior way which not only can be used in constrained setting, but also in relaxed iris imaging. We further extend the work to analyze the applicability to VIS iris images by employing a large scale public iris image database - UBIRIS(v1 & v2), captured in a unconstrained setting. Through a set of experiments, we demonstrate the applicability of proposed approach and vet the strengths and weakness. Yet another contribution of this work stems in assessing the security of the proposed approach where factors of Unlinkability is studied to indicate the antagonistic nature to relaxed iris imaging scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here