Paper

Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging

Automatic fall detection is a vital technology for ensuring the health and safety of people. Home-based camera systems for fall detection often put people's privacy at risk. Thermal cameras can partially or fully obfuscate facial features, thus preserving the privacy of a person. Another challenge is the less occurrence of falls in comparison to the normal activities of daily living. As fall occurs rarely, it is non-trivial to learn algorithms due to class imbalance. To handle these problems, we formulate fall detection as an anomaly detection within an adversarial framework using thermal imaging. We present a novel adversarial network that comprises of two-channel 3D convolutional autoencoders which reconstructs the thermal data and the optical flow input sequences respectively. We introduce a technique to track the region of interest, a region-based difference constraint, and a joint discriminator to compute the reconstruction error. A larger reconstruction error indicates the occurrence of a fall. The experiments on a publicly available thermal fall dataset show the superior results obtained compared to the standard baseline.

Results in Papers With Code
(↓ scroll down to see all results)