Motion-Compensated Coding and Frame-Rate Up-Conversion: Models and Analysis

12 Apr 2014  ·  Yehuda Dar, Alfred M. Bruckstein ·

Block-based motion estimation (ME) and compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in numerous compression specifications... Specifically, there is a diversity of frame-rates and bit-rates. In this paper, we study the effect of frame-rate and compression bit-rate on block-based ME and MC as commonly utilized in inter-frame coding and frame-rate up conversion (FRUC). This joint examination yields a comprehensive foundation for comparing MC procedures in coding and FRUC. First, the video signal is modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of an available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is further analyzed and its autocorrelation function is calculated for coding and FRUC applications. We show a linear relation between the variance of the MC-prediction error and temporal-distance. While the affecting distance in MC-coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the available frames used for the interpolation. Moreover, the dependency in temporal-distance implies an inverse effect of the frame-rate. FRUC performance analysis considers the prediction error variance, since it equals to the mean-squared-error of the interpolation. However, MC-coding analysis requires the entire autocorrelation function of the error; hence, analytic simplicity is beneficial. Therefore, we propose two constructions of a separable autocorrelation function for prediction error in MC-coding. We conclude by comparing our estimations with experimental results. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here