Motion Invariance in Visual Environments

14 Jul 2018Alessandro BettiMarco GoriStefano Melacci

The puzzle of computer vision might find new challenging solutions when we realize that most successful methods are working at image level, which is remarkably more difficult than processing directly visual streams, just as happens in nature. In this paper, we claim that their processing naturally leads to formulate the motion invariance principle, which enables the construction of a new theory of visual learning based on convolutional features... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet