Moving horizon estimation for nonlinear systems with time-varying parameters

15 Apr 2024  ·  Julian D. Schiller, Matthias A. Müller ·

We propose a moving horizon estimation scheme for estimating the states and time-varying parameters of nonlinear systems. We consider the case where observability of the parameters depends on the excitation of the system and may be absent during operation, with the parameter dynamics fulfilling a weak incremental bounded-energy bounded-state property to ensure boundedness of the estimation error (with respect to the disturbance energy). The proposed estimation scheme involves a standard quadratic cost function with an adaptive regularization term depending on the current parameter observability. We develop robustness guarantees for the overall estimation error that are valid for all times, and that improve the more often the parameters are detected to be observable during operation. The theoretical results are illustrated by a simulation example.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here