Multi-Agent Multi-Armed Bandits with Limited Communication

10 Feb 2021  ·  Mridul Agarwal, Vaneet Aggarwal, Kamyar Azizzadenesheli ·

We consider the problem where $N$ agents collaboratively interact with an instance of a stochastic $K$ arm bandit problem for $K \gg N$. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of $T$ time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of $\tilde{O}\left(\sqrt{({K/N}+ N)T}\right)$, communicates for $O(\log T)$ steps and broadcasts $O(\log K)$ bits in each communication step. We extend the work to sparse graphs with maximum degree $K_G$, and diameter $D$ and propose LCC-UCB-GRAPH which enjoys a regret bound of $\tilde{O}\left(D\sqrt{(K/N+ K_G)DT}\right)$. Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithm perform well and outperform strategies that communicate through a central node

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here