Multi-Conditional Ranking with Large Language Models

30 Mar 2024  ·  Pouya Pezeshkpour, Estevam Hruschka ·

Utilizing large language models (LLMs) to rank a set of items has become a common approach in recommendation and retrieval systems. Typically, these systems focus on ordering a substantial number of documents in a monotonic order based on a given query. However, real-world scenarios often present a different challenge: ranking a comparatively smaller set of items, but according to a variety of diverse and occasionally conflicting conditions. In this paper, we define and explore the task of multi-conditional ranking by introducing MCRank, a benchmark tailored for assessing multi-conditional ranking across various item types and conditions. Our analysis of LLMs using MCRank indicates a significant decrease in performance as the number and complexity of items and conditions grow. To overcome this limitation, we propose a novel decomposed reasoning method, consisting of EXtracting and Sorting the conditions, and then Iterativly Ranking the items (EXSIR). Our extensive experiments show that this decomposed reasoning method enhances LLMs' performance significantly, achieving up to a 12% improvement over existing LLMs. We also provide a detailed analysis of LLMs performance across various condition categories, and examine the effectiveness of decomposition step. Furthermore, we compare our method with existing approaches such as Chain-of-Thought and an encoder-type ranking model, demonstrating the superiority of our approach and complexity of MCR task. We released our dataset and code.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods