Multi-kernel Passive Stochastic Gradient Algorithms and Transfer Learning

23 Aug 2020  ·  Vikram Krishnamurthy, George Yin ·

This paper develops a novel passive stochastic gradient algorithm. In passive stochastic approximation, the stochastic gradient algorithm does not have control over the location where noisy gradients of the cost function are evaluated. Classical passive stochastic gradient algorithms use a kernel that approximates a Dirac delta to weigh the gradients based on how far they are evaluated from the desired point. In this paper we construct a multi-kernel passive stochastic gradient algorithm. The algorithm performs substantially better in high dimensional problems and incorporates variance reduction. We analyze the weak convergence of the multi-kernel algorithm and its rate of convergence. In numerical examples, we study the multi-kernel version of the passive least mean squares (LMS) algorithm for transfer learning to compare the performance with the classical passive version.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here