Multi-label Classification for Fault Diagnosis of Rotating Electrical Machines

2 Aug 2019  ·  Adrienn Dineva, Amir Mosavi, Mate Gyimesi, Istvan Vajda ·

Primary importance is devoted to Fault Detection and Diagnosis (FDI) of electrical machine and drive systems in modern industrial automation. The widespread use of Machine Learning techniques has made it possible to replace traditional motor fault detection techniques with more efficient solutions that are capable of early fault recognition by using large amounts of sensory data. However, the detection of concurrent failures is still a challenge in the presence of disturbing noises or when the multiple faults cause overlapping features. The contribution of this work is to propose a novel methodology using multi-label classification method for simultaneously diagnosing multiple faults and evaluating the fault severity under noisy conditions. Performance of various multi-label classification models are compared. Current and vibration signals are acquired under normal and fault conditions. The applicability of the proposed method is experimentally validated under diverse fault conditions such as unbalance and misalignment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here