Multi-Label Learning of Part Detectors for Heavily Occluded Pedestrian Detection

ICCV 2017 Chunluan ZhouJunsong Yuan

Detecting pedestrians that are partially occluded remains a challenging problem due to variations and uncertainties of partial occlusion patterns. Following a commonly used framework of handling partial occlusions by part detection, we propose a multi-label learning approach to jointly learn part detectors to capture partial occlusion patterns... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet