A Family of Pairwise Multi-Marginal Optimal Transports that Define a Generalized Metric

29 Jan 2020  ·  Liang Mi, Azadeh Sheikholeslami, José Bento ·

The Optimal transport (OT) problem is rapidly finding its way into machine learning. Favoring its use are its metric properties. Many problems admit solutions with guarantees only for objects embedded in metric spaces, and the use of non-metrics can complicate solving them. Multi-marginal OT (MMOT) generalizes OT to simultaneously transporting multiple distributions. It captures important relations that are missed if the transport only involves two distributions. Research on MMOT, however, has been focused on its existence, uniqueness, practical algorithms, and the choice of cost functions. There is a lack of discussion on the metric properties of MMOT, which limits its theoretical and practical use. Here, we prove new generalized metric properties for a family of pairwise MMOTs. We first explain the difficulty of proving this via two negative results. Afterward, we prove the MMOTs' metric properties. Finally, we show that the generalized triangle inequality of this family of MMOTs cannot be improved. We illustrate the superiority of our MMOTs over other generalized metrics, and over non-metrics in both synthetic and real tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here