Multi-modal Emotion Estimation for in-the-wild Videos

24 Mar 2022  ·  Liyu Meng, Yuchen Liu, Xiaolong Liu, Zhaopei Huang, Yuan Cheng, Meng Wang, Chuanhe Liu, Qin Jin ·

In this paper, we briefly introduce our submission to the Valence-Arousal Estimation Challenge of the 3rd Affective Behavior Analysis in-the-wild (ABAW) competition. Our method utilizes the multi-modal information, i.e., the visual and audio information, and employs a temporal encoder to model the temporal context in the videos. Besides, a smooth processor is applied to get more reasonable predictions, and a model ensemble strategy is used to improve the performance of our proposed method. The experiment results show that our method achieves 65.55% ccc for valence and 70.88% ccc for arousal on the validation set of the Aff-Wild2 dataset, which prove the effectiveness of our proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here