Multi-Object Graph Affordance Network: Enabling Goal-Oriented Planning through Compound Object Affordances

19 Sep 2023  ·  Tuba Girgin, Emre Ugur ·

Learning object affordances is an effective tool in the field of robot learning. While the data-driven models delve into the exploration of affordances of single or paired objects, there is a notable gap in the investigation of affordances of compound objects that are composed of an arbitrary number of objects with complex shapes. In this study, we propose Multi-Object Graph Affordance Network (MOGAN) that models compound object affordances and predicts the effect of placing new objects on top of the existing compound. Given different tasks, such as building towers of specific heights or properties, we used a search based planning to find the sequence of stack actions with the objects of suitable affordances. We showed that our system was able to correctly model the affordances of very complex compound objects that include stacked spheres and cups, poles, and rings that enclose the poles. We demonstrated the applicability of our system in both simulated and real-world environments, comparing our systems with a baseline model to highlight its advantages.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here