Multi-Source Unsupervised Hyperparameter Optimization

28 Sep 2020  ·  Masahiro Nomura, Yuta Saito ·

How can we conduct efficient hyperparameter optimization for a completely new task? In this work, we consider a novel setting, where we search for the optimal hyperparameters for a target task of interest using only unlabeled target task and ‘somewhat relevant’ source task datasets. In this setting, it is essential to estimate the ground-truth target task objective using only the available information. We propose estimators to unbiasedly approximate the ground-truth with a desirable variance property. Building on these estimators, we provide a general and tractable hyperparameter optimization procedure for our setting. The experimental evaluations demonstrate that the proposed framework broadens the applications of automated hyperparameter optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here