Multi-Stage Pre-training for Low-Resource Domain Adaptation
Transfer learning techniques are particularly useful in NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pre-trained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pre-trained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.
PDF Abstract EMNLP 2020 PDF EMNLP 2020 Abstract