Multi-task Learning with Gradient Communication

ICLR 2019 Pengfei LiuXuanjing Huang

In this paper, we describe a general framework to systematically analyze current neural models for multi-task learning, in which we find that existing models expect to disentangle features into different spaces while features learned in practice are still entangled in shared space, leaving potential hazards for other training or unseen tasks. We propose to alleviate this problem by incorporating a new inductive bias into the process of multi-task learning, that different tasks can communicate with each other not only by passing hidden variables but gradients explicitly... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet