Multi-VAE: Learning Disentangled View-common and View-peculiar Visual Representations for Multi-view Clustering

Multi-view clustering, a long-standing and important research problem, focuses on mining complementary information from diverse views. However, existing works often fuse multiple views' representations or handle clustering in a common feature space, which may result in their entanglement especially for visual representations. To address this issue, we present a novel VAE-based multi-view clustering framework (Multi-VAE) by learning disentangled visual representations. Concretely, we define a view-common variable and multiple view-peculiar variables in the generative model. The prior of view-common variable obeys approximately discrete Gumbel Softmax distribution, which is introduced to extract the common cluster factor of multiple views. Meanwhile, the prior of view-peculiar variable follows continuous Gaussian distribution, which is used to represent each view's peculiar visual factors. By controlling the mutual information capacity to disentangle the view-common and view-peculiar representations, continuous visual information of multiple views can be separated so that their common discrete cluster information can be effectively mined. Experimental results demonstrate that Multi-VAE enjoys the disentangled and explainable visual representations, while obtaining superior clustering performance compared with state-of-the-art methods.

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods