Quantifying the complex/multifractal organization of the brain signals is crucial to fully understanding the brain processes and structure. In this contribution, we performed the multifractal analysis of the electroencephalographic (EEG) data obtained from a controlled multiple sclerosis (MS) study, focusing on the correlation between the degree of multifractality, disease duration, and disability level. Our results reveal a significant correspondence between the complexity of the time series and multiple sclerosis development, quantified respectively by scaling exponents and the Expanded Disability Status Scale (EDSS). Namely, for some brain regions, a well-developed multifractality and little persistence of the time series were identified in patients with a high level of disability, whereas the control group and patients with low EDSS were characterised by persistence and monofractality of the signals. The analysis of the cross-correlations between EEG signals supported these results, with the most significant differences identified for patients with EDSS $> 1$ and the combined group of patients with EDSS $\leq 1$ and controls. No association between the multifractality and disease duration was observed, indicating that the multifractal organisation of the data is a hallmark of developing the disease. The observed complexity/multifractality of EEG signals is hypothetically a result of neuronal compensation -- i.e., of optimizing neural processes in the presence of structural brain degeneration. The presented study is highly relevant due to the multifractal formalism used to quantify complexity and due to scarce resting-state EEG evidence for cortical reorganization associated with compensation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here