Multilabel Classification by Hierarchical Partitioning and Data-dependent Grouping

In modern multilabel classification problems, each data instance belongs to a small number of classes from a large set of classes. In other words, these problems involve learning very sparse binary label vectors. Moreover, in large-scale problems, the labels typically have certain (unknown) hierarchy. In this paper we exploit the sparsity of label vectors and the hierarchical structure to embed them in low-dimensional space using label groupings. Consequently, we solve the classification problem in a much lower dimensional space and then obtain labels in the original space using an appropriately defined lifting. Our method builds on the work of (Ubaru & Mazumdar, 2017), where the idea of group testing was also explored for multilabel classification. We first present a novel data-dependent grouping approach, where we use a group construction based on a low-rank Nonnegative Matrix Factorization (NMF) of the label matrix of training instances. The construction also allows us, using recent results, to develop a fast prediction algorithm that has a logarithmic runtime in the number of labels. We then present a hierarchical partitioning approach that exploits the label hierarchy in large scale problems to divide up the large label space and create smaller sub-problems, which can then be solved independently via the grouping approach. Numerical results on many benchmark datasets illustrate that, compared to other popular methods, our proposed methods achieve competitive accuracy with significantly lower computational costs.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here