Multilingual Back-and-Forth Conversion between Content and Function Head for Easy Dependency Parsing

EACL 2017  ·  Ryosuke Kohita, Hiroshi Noji, Yuji Matsumoto ·

Universal Dependencies (UD) is becoming a standard annotation scheme cross-linguistically, but it is argued that this scheme centering on content words is harder to parse than the conventional one centering on function words. To improve the parsability of UD, we propose a back-and-forth conversion algorithm, in which we preprocess the training treebank to increase parsability, and reconvert the parser outputs to follow the UD scheme as a postprocess... We show that this technique consistently improves LAS across languages even with a state-of-the-art parser, in particular on core dependency arcs such as nominal modifier. We also provide an in-depth analysis to understand why our method increases parsability. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here