Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

23 Jan 2018  ·  Tong Sibo, Garner Philip N., Bourlard Hervé ·

Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states... Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here