Multimodal speech synthesis architecture for unsupervised speaker adaptation

20 Aug 2018Hieu-Thi LuongJunichi Yamagishi

This paper proposes a new architecture for speaker adaptation of multi-speaker neural-network speech synthesis systems, in which an unseen speaker's voice can be built using a relatively small amount of speech data without transcriptions. This is sometimes called "unsupervised speaker adaptation"... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet