Multiple-Hypothesis Affine Region Estimation With Anisotropic LoG Filters

We propose a method for estimating multiple-hypothesis affine regions from a keypoint by using an anisotropic Laplacian-of-Gaussian (LoG) filter. Although conventional affine region detectors, such as Hessian/Harris-Affine, iterate to find an affine region that fits a given image patch, such iterative searching is adversely affected by an initial point. To avoid this problem, we allow multiple detections from a single keypoint. We demonstrate that the responses of all possible anisotropic LoG filters can be efficiently computed by factorizing them in a similar manner to spectral SIFT. A large number of LoG filters that are densely sampled in a parameter space are reconstructed by a weighted combination of a limited number of representative filters, called ``eigenfilters", by using singular value decomposition. Also, the reconstructed filter responses of the sampled parameters can be interpolated to a continuous representation by using a series of proper functions. This results in efficient multiple extrema searching in a continuous space. Experiments revealed that our method has higher repeatability than the conventional methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here