Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications

11 Mar 2018  ·  Xiaoxiao Du, Alina Zare ·

In classifier (or regression) fusion the aim is to combine the outputs of several algorithms to boost overall performance. Standard supervised fusion algorithms often require accurate and precise training labels... However, accurate labels may be difficult to obtain in many remote sensing applications. This paper proposes novel classification and regression fusion models that can be trained given ambiguosly and imprecisely labeled training data in which training labels are associated with sets of data points (i.e., "bags") instead of individual data points (i.e., "instances") following a multiple instance learning framework. Experiments were conducted based on the proposed algorithms on both synthetic data and applications such as target detection and crop yield prediction given remote sensing data. The proposed algorithms show effective classification and regression performance. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here