Multiple instance learning with graph neural networks

12 Jun 2019  ·  Ming Tu, Jing Huang, Xiaodong He, Bo-Wen Zhou ·

Multiple instance learning (MIL) aims to learn the mapping between a bag of instances and the bag-level label. In this paper, we propose a new end-to-end graph neural network (GNN) based algorithm for MIL: we treat each bag as a graph and use GNN to learn the bag embedding, in order to explore the useful structural information among instances in bags... The final graph representation is fed into a classifier for label prediction. Our algorithm is the first attempt to use GNN for MIL. We empirically show that the proposed algorithm achieves the state of the art performance on several popular MIL data sets without losing model interpretability. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here