Multivariate mean estimation with direction-dependent accuracy

22 Oct 2020  ·  Gabor Lugosi, Shahar Mendelson ·

We consider the problem of estimating the mean of a random vector based on $N$ independent, identically distributed observations. We prove the existence of an estimator that has a near-optimal error in all directions in which the variance of the one dimensional marginal of the random vector is not too small: with probability $1-\delta$, the procedure returns $\wh{\mu}_N$ which satisfies that for every direction $u \in S^{d-1}$, \[ \inr{\wh{\mu}_N - \mu, u}\le \frac{C}{\sqrt{N}} \left( \sigma(u)\sqrt{\log(1/\delta)} + \left(\E\|X-\EXP X\|_2^2\right)^{1/2} \right)~, \] where $\sigma^2(u) = \var(\inr{X,u})$ and $C$ is a constant. To achieve this, we require only slightly more than the existence of the covariance matrix, in the form of a certain moment-equivalence assumption. The proof relies on novel bounds for the ratio of empirical and true probabilities that hold uniformly over certain classes of random variables.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here