Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts

We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks which may interfere with each other, resulting in a single model which we named Musketeer. The integration of knowledge across heterogeneous tasks is enabled by a novel feature called Task Explanation Prompt (TEP). With rich and structured information such as task input/output format, TEP reduces interference among tasks, allowing the model to focus on their shared structure. With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here