The emergence of SARS-CoV-2 variants of concern endangers the long-term control of COVID-19, especially in countries with limited genomic surveillance. In this work, we explored genomic drivers of contagion in Chile. We sequenced 3443 SARS-CoV-2 genomes collected between January and July 2021, where the Gamma (P.1), Lambda (C.37), Alpha (B.1.1.7), B.1.1.348, and B.1.1 lineages were predominant. Using a Bayesian model tailored for limited genomic surveillance, we found that Lambda and Gamma variants' reproduction numbers were about 5% and 16% larger than Alpha's, respectively. We observed an overabundance of mutations in the Spike gene, strongly correlated with the variant's transmissibility. Furthermore, the variants' mutational signatures featured a breakpoint concurrent with the beginning of vaccination (mostly CoronaVac, an inactivated virus vaccine), indicating an additional putative selective pressure. Thus, our work provides a reliable method for quantifying novel variants' transmissibility under subsampling (as newly-reported Delta, B.1.617.2) and highlights the importance of continuous genomic surveillance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here