Mutual Information for Explainable Deep Learning of Multiscale Systems

7 Sep 2020  ·  Søren Taverniers, Eric J. Hall, Markos A. Katsoulakis, Daniel M. Tartakovsky ·

Timely completion of design cycles for complex systems ranging from consumer electronics to hypersonic vehicles relies on rapid simulation-based prototyping. The latter typically involves high-dimensional spaces of possibly correlated control variables (CVs) and quantities of interest (QoIs) with non-Gaussian and possibly multimodal distributions. We develop a model-agnostic, moment-independent global sensitivity analysis (GSA) that relies on differential mutual information to rank the effects of CVs on QoIs. The data requirements of this information-theoretic approach to GSA are met by replacing computationally intensive components of the physics-based model with a deep neural network surrogate. Subsequently, the GSA is used to explain the network predictions, and the surrogate is deployed to close design loops. Viewed as an uncertainty quantification method for interrogating the surrogate, this framework is compatible with a wide variety of black-box models. We demonstrate that the surrogate-driven mutual information GSA provides useful and distinguishable rankings on two applications of interest in energy storage. Consequently, our information-theoretic GSA provides an "outer loop" for accelerated product design by identifying the most and least sensitive input directions and performing subsequent optimization over appropriately reduced parameter subspaces.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here