MyWear: A Smart Wear for Continuous Body Vital Monitoring and Emergency Alert

17 Oct 2020  ·  Sibi C. Sethuraman, Pranav Kompally, Saraju P. Mohanty, Uma Choppali ·

Smart healthcare which is built as healthcare Cyber-Physical System (H-CPS) from Internet-of-Medical-Things (IoMT) is becoming more important than before. Medical devices and their connectivity through Internet with alongwith the electronics health record (EHR) and AI analytics making H-CPS possible. IoMT-end devices like wearables and implantables are key for H-CPS based smart healthcare. Smart garment is a specific wearable which can be used for smart healthcare. There are various smart garments that help users to monitor their body vitals in real-time. Many commercially available garments collect the vital data and transmit it to the mobile application for visualization. However, these don't perform real-time analysis for the user to comprehend their health conditions. Also, such garments are not included with an alert system to alert users and contacts in case of emergency. In MyWear, we propose a wearable body vital monitoring garment that captures physiological data and automatically analyses such heart rate, stress level, muscle activity to detect abnormalities. A copy of the physiological data is transmitted to the cloud for detecting any abnormalities in heart beats and predict any potential heart failure in future. We also propose a deep neural network (DNN) model that automatically classifies abnormal heart beat and potential heart failure. For immediate assistance in such a situation, we propose an alert system that sends an alert message to nearby medical officials. The proposed MyWear has an average accuracy of 96.9% and precision of 97.3% for detection of the abnormalities.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here