$\nabla$SD: Differentiable Programming for Sparse Tensors

13 Mar 2023  ·  Amir Shaikhha, Mathieu Huot, Shideh Hashemian ·

Sparse tensors are prevalent in many data-intensive applications, yet existing differentiable programming frameworks are tailored towards dense tensors. This presents a significant challenge for efficiently computing gradients through sparse tensor operations, as their irregular sparsity patterns can result in substantial memory and computational overheads. In this work, we introduce a novel framework that enables the efficient and automatic differentiation of sparse tensors, addressing this fundamental issue. Our experiments demonstrate the effectiveness of the proposed framework in terms of performance and scalability, outperforming state-of-the-art frameworks across a range of synthetic and real-world datasets. Our approach offers a promising direction for enabling efficient and scalable differentiable programming with sparse tensors, which has significant implications for numerous applications in machine learning, natural language processing, and scientific computing.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here