NatCSNN: A Convolutional Spiking Neural Network for recognition of objects extracted from natural images

18 Sep 2019Pedro MachadoGeorgina CosmaT. M McGinnity

Biological image processing is performed by complex neural networks composed of thousands of neurons interconnected via thousands of synapses, some of which are excitatory and others inhibitory. Spiking neural models are distinguished from classical neurons by being biological plausible and exhibiting the same dynamics as those observed in biological neurons... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet