Natural Language Does Not Emerge `Naturally' in Multi-Agent Dialog

EMNLP 2017 Satwik KotturJos{\'e} MouraStefan LeeDhruv Batra

A number of recent works have proposed techniques for end-to-end learning of communication protocols among cooperative multi-agent populations, and have simultaneously found the emergence of grounded human-interpretable language in the protocols developed by the agents, learned without any human supervision! In this paper, using a Task {\&} Talk reference game between two agents as a testbed, we present a sequence of {`}negative{'} results culminating in a {`}positive{'} one {--} showing that while most agent-invented languages are effective (i.e. achieve near-perfect task rewards), they are decidedly not interpretable or compositional... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet