NBA2Vec: Dense feature representations of NBA players

26 Feb 2023  ·  Webster Guan, Nauman Javed, Peter Lu ·

Understanding a player's performance in a basketball game requires an evaluation of the player in the context of their teammates and the opposing lineup. Here, we present NBA2Vec, a neural network model based on Word2Vec which extracts dense feature representations of each player by predicting play outcomes without the use of hand-crafted heuristics or aggregate statistical measures. Specifically, our model aimed to predict the outcome of a possession given both the offensive and defensive players on the court. By training on over 3.5 million plays involving 1551 distinct players, our model was able to achieve a 0.3 K-L divergence with respect to the empirical play-by-play distribution. The resulting embedding space is consistent with general classifications of player position and style, and the embedding dimensions correlated at a significant level with traditional box score metrics. Finally, we demonstrate that NBA2Vec accurately predicts the outcomes to various 2017 NBA Playoffs series, and shows potential in determining optimal lineup match-ups. Future applications of NBA2Vec embeddings to characterize players' style may revolutionize predictive models for player acquisition and coaching decisions that maximize team success.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here