Near-complete protein structural modelling of the minimal genome

13 Jul 2020  ·  Joe G Greener, Nikita Desai, Shaun M Kandathil, David T Jones ·

Protein tertiary structure prediction has improved dramatically in recent years. A considerable fraction of various proteomes can be modelled in the absence of structural templates. We ask whether our DMPfold method can model all the proteins without templates in the JCVI-syn3.0 minimal genome, which contains 438 proteins. We find that a useful tertiary structure annotation can be provided for all but 10 proteins. The models may help annotate function in cases where it is unknown, and provide coverage for 29 predicted protein-protein interactions which lacked monomer models. We also show that DMPfold performs well on proteins with structures released since initial publication. It is likely that the minimal genome will have complete structural coverage within a few years.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here