Near Optimal Algorithms for Hard Submodular Programs with Discounted Cooperative Costs

26 Feb 2019  ·  Rishabh Iyer, Jeff Bilmes ·

In this paper, we investigate a class of submodular problems which in general are very hard. These include minimizing a submodular cost function under combinatorial constraints, which include cuts, matchings, paths, etc., optimizing a submodular function under submodular cover and submodular knapsack constraints, and minimizing a ratio of submodular functions. All these problems appear in several real world problems but have hardness factors of $\Omega(\sqrt{n})$ for general submodular cost functions. We show how we can achieve constant approximation factors when we restrict the cost functions to low rank sums of concave over modular functions. A wide variety of machine learning applications are very naturally modeled via this subclass of submodular functions. Our work therefore provides a tighter connection between theory and practice by enabling theoretically satisfying guarantees for a rich class of expressible, natural, and useful submodular cost models. We empirically demonstrate the utility of our models on real world problems of cooperative image matching and sensor placement with cooperative costs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here