Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities

28 Feb 2018  ·  Timothy Carpenter, Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart ·

We study the problem of learning multivariate log-concave densities with respect to a global loss function. We obtain the first upper bound on the sample complexity of the maximum likelihood estimator (MLE) for a log-concave density on $\mathbb{R}^d$, for all $d \geq 4$. Prior to this work, no finite sample upper bound was known for this estimator in more than $3$ dimensions. In more detail, we prove that for any $d \geq 1$ and $\epsilon>0$, given $\tilde{O}_d((1/\epsilon)^{(d+3)/2})$ samples drawn from an unknown log-concave density $f_0$ on $\mathbb{R}^d$, the MLE outputs a hypothesis $h$ that with high probability is $\epsilon$-close to $f_0$, in squared Hellinger loss. A sample complexity lower bound of $\Omega_d((1/\epsilon)^{(d+1)/2})$ was previously known for any learning algorithm that achieves this guarantee. We thus establish that the sample complexity of the log-concave MLE is near-optimal, up to an $\tilde{O}(1/\epsilon)$ factor.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here