Near Optimal Sketching of Low-Rank Tensor Regression

We study the least squares regression problem \begin{align*} \min_{\Theta \in \mathcal{S}_{\odot D,R}} \|A\Theta-b\|_2, \end{align*} where $\mathcal{S}_{\odot D,R}$ is the set of $\Theta$ for which $\Theta = \sum_{r=1}^{R} \theta_1^{(r)} \circ \cdots \circ \theta_D^{(r)}$ for vectors $\theta_d^{(r)} \in \mathbb{R}^{p_d}$ for all $r \in [R]$ and $d \in [D]$, and $\circ$ denotes the outer product of vectors. That is, $\Theta$ is a low-dimensional, low-rank tensor. This is motivated by the fact that the number of parameters in $\Theta$ is only $R \cdot \sum_{d=1}^D p_d$, which is significantly smaller than the $\prod_{d=1}^{D} p_d$ number of parameters in ordinary least squares regression. We consider the above CP decomposition model of tensors $\Theta$, as well as the Tucker decomposition. For both models we show how to apply data dimensionality reduction techniques based on {\it sparse} random projections $\Phi \in \mathbb{R}^{m \times n}$, with $m \ll n$, to reduce the problem to a much smaller problem $\min_{\Theta} \|\Phi A \Theta - \Phi b\|_2$, for which if $\Theta'$ is a near-optimum to the smaller problem, then it is also a near optimum to the original problem. We obtain significantly smaller dimension and sparsity in $\Phi$ than is possible for ordinary least squares regression, and we also provide a number of numerical simulations supporting our theory.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here