Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits

30 Mar 2019Yingkai LiYining WangYuan Zhou

We study the linear contextual bandit problem with finite action sets. When the problem dimension is $d$, the time horizon is $T$, and there are $n \leq 2^{d/2}$ candidate actions per time period, we (1) show that the minimax expected regret is $\Omega(\sqrt{dT \log T \log n})$ for every algorithm, and (2) introduce a Variable-Confidence-Level (VCL) SupLinUCB algorithm whose regret matches the lower bound up to iterated logarithmic factors... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet